Molecular Identification of the Glutaredoxin 5 Gene That Plays Important Roles in Antioxidant Defense in <i>Arma chinensis</i> (Fallou)
Qiaozhi Luo,
Zhongjian Shen,
Nipapan Kanjana,
Xingkai Guo,
Huihui Wu,
Lisheng Zhang
Affiliations
Qiaozhi Luo
School of Horticulture and Gardening, Tianjin Agricultural University, Tianjin 300392, China
Zhongjian Shen
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Nipapan Kanjana
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Xingkai Guo
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Huihui Wu
School of Horticulture and Gardening, Tianjin Agricultural University, Tianjin 300392, China
Lisheng Zhang
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Glutaredoxin (Grx) is a group of redox enzymes that control reactive oxygen species (ROS), traditionally defined as redox regulators. Recent research suggested that members of the Grx family may be involved in more biological processes than previously thought. Therefore, we cloned the AcGrx5 gene and identified its role in A. chinensis diapause. Sequence analysis revealed the ORF of AcGrx5 was 432 bp, encoding 143 amino acids, which was consistent with the homologous sequence of Halyomorpha halys. RT-qPCR results showed that AcGrx5 expression was the highest in the head, and compared with non-diapause conditions, diapause conditions significantly increased the expression of AcGrx5 in the developmental stages. Further, we found that 15 °C low-temperature stress significantly induced AcGrx5 expression, and the expression of antioxidant enzyme genes AcTrx2 and AcTrx-like were significantly increased after AcGrx5 knockdown. Following AcGrx5 silencing, there was a considerable rise in the levels of VC content, CAT activity, and hydrogen peroxide content, indicating that A. chinensis was exposed to high levels of reactive oxygen species. These results suggested that the AcGrx5 gene may play a key role in antioxidant defense.