Arabian Journal of Chemistry (Feb 2023)

Enhancement of Cd2+ removal on CuMgAl-layered double hydroxide/montmorillonite nanocomposite: Kinetic, isotherm, and thermodynamic studies

  • Fatin A. Alnasrawi,
  • Ahmed A. Mohammed

Journal volume & issue
Vol. 16, no. 2
p. 104471

Abstract

Read online

In recent decades, great progress has been made in the application of adsorption processes to mitigate water pollution by hazardous metals. However, developing a highly efficient adsorbent is essential if the adsorption process is to be successfully applied in practical applications. In this study, a CuMgAl-layered double hydroxides/montmorillonite nanocomposite (CuMgAl-LDH/MMt) was prepared, characterized, and then used as a novel adsorbent for adsorption of Cd2+ ions from wastewater. The effects of initial pH, adsorbent dosage, agitation speed, particle size, contact time, initial Cd2+ concentration, and temperature on the pollutant removal efficiency were analyzed. An isotherm model reading revealed that the results of the experimental work were a good fit with the Freundlich model. The maximum adsorption capacity was reached at 174.87 mg/g under optimal conditions (pH 5, dosage of 0.02 g/l, agitation speed of 150 rpm, and particle size of 87 μm) at 50 ppm after 120 min of adsorption time. Kinetic studies showed that pseudo-second-order models were best fitted to the adsorption data, indicating heterogeneous adsorption of Cd2+ ions onto multilayer CuMgAl-LDH/MMt sites, and that the adsorption process is primarily chemical adsorption. Thermodynamic parameters (ΔSo, ΔHo, and ΔGo) demonstrated that Cd2+ adsorption onto adsorbent was exothermic and spontaneous. Moreover, the synthesized adsorbent can be recovered after five consecutive cycles with a minimal reduction in the adsorption ability of 29.56 %. The study showed that specific heavy metals can be removed from aqueous solution by a newly prepared adsorbent due to its excellent morphology, high stability under a wide range of conditions, recyclability, and high adsorption capacity.

Keywords