Identification and mechanistic analysis of an inhibitor of the CorC Mg2+ transporter
Yichen Huang,
Kaijie Mu,
Xinyu Teng,
Yimeng Zhao,
Yosuke Funato,
Hiroaki Miki,
Weiliang Zhu,
Zhijian Xu,
Motoyuki Hattori
Affiliations
Yichen Huang
State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China
Kaijie Mu
CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong New Area, Shanghai, 201203, China
Xinyu Teng
State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China
Yimeng Zhao
State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China
Yosuke Funato
Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Hiroaki Miki
Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Weiliang Zhu
CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong New Area, Shanghai, 201203, China
Zhijian Xu
CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong New Area, Shanghai, 201203, China; Corresponding author
Motoyuki Hattori
State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China; Corresponding author
Summary: The CorC/CNNM family of Na+-dependent Mg2+ transporters is ubiquitously conserved from bacteria to humans. CorC, the bacterial CorC/CNNM family of proteins, is involved in resistance to antibiotic exposure and in the survival of pathogenic microorganisms in their host environment. The CorC/CNNM family proteins possess a cytoplasmic region containing the regulatory ATP-binding site. CorC and CNNM have attracted interest as therapeutic targets, whereas inhibitors targeting the ATP-binding site have not been identified. Here, we performed a virtual screening of CorC by targeting its ATP-binding site, identified a compound named IGN95a with inhibitory effects on ATP binding and Mg2+ export, and determined the cytoplasmic domain structure in complex with IGN95a. Furthermore, a chemical cross-linking experiment indicated that with ATP bound to the cytoplasmic domain, the conformational equilibrium of CorC was shifted more toward the inward-facing state of the transmembrane domain. In contrast, IGN95a did not induce such a shift.