Biosynthesized Silica Nanosuspension as Thermal Fluid in Parabolic Solar Panels
Enrique Corzo-Deluquez,
Lina Pineda-Muñoz,
Adiela Ruíz-Chamorro,
Carlos Ocampo-López,
Margarita Ramírez-Carmona,
Leidy Rendón-Castrillón
Affiliations
Enrique Corzo-Deluquez
Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1ª No. 70-01, Medellín 050031, Colombia
Lina Pineda-Muñoz
Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1ª No. 70-01, Medellín 050031, Colombia
Adiela Ruíz-Chamorro
Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1ª No. 70-01, Medellín 050031, Colombia
Carlos Ocampo-López
Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1ª No. 70-01, Medellín 050031, Colombia
Margarita Ramírez-Carmona
Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1ª No. 70-01, Medellín 050031, Colombia
Leidy Rendón-Castrillón
Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1ª No. 70-01, Medellín 050031, Colombia
In this work, the production of biologically synthesized silica nanoparticles was proposed to prepare a nanosuspension as a thermal fluid in parabolic solar panels at the laboratory level. Silica nanoparticles were produced from construction sand in two stages. Biosynthesis broth was produced by Aspergillus niger aerated fermentation in a 1 L bioreactor for 9 days. Each supernatant was contacted with 18% construction sand in a 500 L reactor with mechanical agitation, at a temperature of 25 °C, and a contact time of 30 min. Subsequently, the separation process was carried out. For day 9, a pH value of 1.71 was obtained as well as acid concentrations of 15.78 g/L for citrus and 4.16 g/L for malic. The metal extraction efficiency of Si nanoparticles was 19%. The vibration peaks in the FTIR were characteristic of the presence of silica nanoparticles in wavenumbers 1020 cm−1 and 1150 cm−1. Finally, a prototype solar radiation test bench for parabolic systems was built and provided with a radiation source that falls on a translucent pipe that transports the nanoparticles, which has a pump and a series of thermocouples. The heat capacity of the biotechnologically produced silica nanoparticle suspension was 0.72 ± 0.05 kJ/kgK, using material and energy balances in the flow circuit.