Applied Sciences (May 2019)
Experimental Study and Optimization of the Organic Rankine Cycle with Pure Novec<sup>TM</sup>649 and Zeotropic Mixture Novec<sup>TM</sup>649/HFE7000 as Working Fluid
Abstract
The Organic Rankine Cycle (ORC) is widely used in industry to recover low-grade heat. Recently, some research on the ORC has focused on micro power production with new low global warming potential (GWP) replacement working fluids. However, few experimental tests have investigated the real performance level of this system in comparison with the ORC using classical fluids. This study concerns the experimental analysis and comparison of a compact (0.25 m3) Organic Rankine Cycle installation using as working fluids the NovecTM649 pure fluid and a zeotropic mixture composed of 80% NovecTM649 and 20% HFE7000 (mass composition) for low-grade waste heat conversion to produce low power. The purpose of this experimental test bench is to study replacement fluids and characterize them as possible replacement fluid candidates for an existing ORC system. The ORC performance with the pure fluid, which is the media specifically designed for this conversion system, shows good results as a replacement fluid in comparison with the ORC literature. The use of the mixture leads to a 10% increase in the global performance of the installation. Concerning the expansion component, an axial micro-turbine, its performance is only slightly affected by the use of the mixture. These results show that zeotropic mixtures can be used as an adjustment parameter for a given ORC installation and thus allow for the best use of the heat source available to produce electricity.
Keywords