Application of the Gaussian Model for Monitoring Scenarios and Estimation of SO<sub>2</sub> Atmospheric Emissions in the Salamanca Area, Bajío, Mexico
Amanda Enrriqueta Violante Gavira,
Wadi Elim Sosa González,
Ramón de Jesús Pali Casanova,
Marcial Alfredo Yam Cervantes,
Manuel Aguilar Vega,
Javier Chacha Coto,
José del Carmen Zavala Loría,
Luis Alonso Dzul López,
Eduardo García Villena
Affiliations
Amanda Enrriqueta Violante Gavira
Project Engineering Doctorate Department, Campus Universidad Internacional Iberoamericana, Calle 15 núm. 36, Entre 10 y 12, IMI III, Campeche 24560, Mexico
Wadi Elim Sosa González
Instituto Tecnológico Superior de Champotón, Carretera Champotón-Isla Aguada Km, Champotón, Campeche 24400, Mexico
Ramón de Jesús Pali Casanova
Project Engineering Doctorate Department, Campus Universidad Internacional Iberoamericana, Calle 15 núm. 36, Entre 10 y 12, IMI III, Campeche 24560, Mexico
Marcial Alfredo Yam Cervantes
Project Engineering Doctorate Department, Campus Universidad Internacional Iberoamericana, Calle 15 núm. 36, Entre 10 y 12, IMI III, Campeche 24560, Mexico
Manuel Aguilar Vega
Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida 97205, Mexico
Javier Chacha Coto
Instituto Tecnológico de Campeche, Carretera Campeche-Escárcega km 9, Lerma, Campeche 24500, Mexico
José del Carmen Zavala Loría
Project Engineering Doctorate Department, Campus Universidad Internacional Iberoamericana, Calle 15 núm. 36, Entre 10 y 12, IMI III, Campeche 24560, Mexico
Luis Alonso Dzul López
Project Engineering Doctorate Department, Campus Universidad Internacional Iberoamericana, Calle 15 núm. 36, Entre 10 y 12, IMI III, Campeche 24560, Mexico
Eduardo García Villena
Department of the Doctorate in Industrial Engineering, Universidad Europea del Atlántico, Calle Isabel Torres No. 21, 39011 Santander, Spain
Population and industrial growth in Mexico’s Bajío region demand greater electricity consumption. The production of electricity from fuel oil has severe implications on climate change and people’s health due to SO2 emissions. This study describes the simulation of eight different scenarios for SO2 pollutant dispersion. It takes into account distance, geoenvironmental parameters, wind, terrain roughness, and Pasquill–Gifford–Turner atmospheric stability and categories of dispersion based on technical information about SO2 concentration from stacks and from one of the atmospheric monitoring stations in Salamanca city. Its transverse character, its usefulness for modeling, and epidemiological, meteorological, and fluid dynamics studies, as suggested by the models approved by the Environmental Protection Agency (EPA), show a maximum average concentration of 399 µg/m3, at an average distance of 1800 m. The best result comparison in the scenarios was scenery 8. Maximum nocturnal dispersion was shown at a wind speed of 8.4 m/s, and an SO2 concentration of 280 µg/m3 for stack 4, an atypical situation due to the geography of the city. From the validation process, a relative error of 14.7 % was obtained, which indicates the reliability of the applied Gaussian model. Regarding the mathematical solution of the model, this represents a reliable and low-cost tool that can help improve air quality management, the location or relocation of atmospheric monitoring stations, and migration from the use of fossil fuels to environmentally friendly fuels.