A multi-functional, three-mode, self-exciting pneumatic vibroactuator was investigated. The special feature of this vibroactuator is that it consists of two excitation chambers connected by an elastic synchronizing chain. A mathematical model of the vibroactuator was created, which was solved by numerical methods. The laws (modes) of the movement of the working organ of this vibroactuator have been determined: harmonic, non-harmonic, and pulsating. The results of numerical and experimental research are compared. The vibroactuator with these extended functional capabilities can be used for the intensification of various production technological processes.