PeerJ (Sep 2021)
Assessment of Aleutian mink disease virus (AMDV) prevalence in feral American mink in Iceland. Case study of a pending epizootiological concern in Europe
Abstract
Background Recurring escapes or deliberate releases and subsequent infiltration or establishment of feral populations by individuals from fur farms have been commonly noted since the beginning of fur industry expansion. Once animals have invaded ecosystems adjacent to source farms escapees can change the demography of the feral populations through hybridization, outbreeding depression, competition and spreading of various pathogens which can decimate wild populations. In our study, we aimed to assess spread of Aleutian mink disease virus (AMDV) in the feral population of American mink (Neovison vison) in Iceland. The additional objective was to elucidate whether basic morpho-anatomical parameters (i.e., Fulton’s condition factor or spleen to body weight ratio) might be used as a preliminary indicator of AMDV infection. Methods American mink (n = 164) were captured by professional hunters in 8 regions of Iceland. The detection of AMDV in the spleen of male and female individuals was based on PCR amplification of an NS1 gene fragment. Results We confirmed AMDV presence in 23.8% (n = 39) of collected samples with no significant difference in infection rate between males and females. Additionally, we revealed that the prevalence of virus in the feral population was higher closer to fur farms. However, the countrywide prevalence and direction of AMDV distribution needs to be further investigated. Comparison of condition indices in non-infected and infected animals showed significant deterioration of body and spleen parameters in the latter group. Therefore, the application of basic measurements of the American mink may be used to evaluate the health status of individuals in terms of pathogen infection. Conclusions The study shed a new light on prevalence and distribution of AMDV in the feral population of American mink in Iceland and the results might be successfully applied to develop models to infer dynamics of various pathogens, even those latently transmitted by disease-free animals.
Keywords