Materials (Jan 2020)

Effect of Imidazoline Inhibitor on the Rehabilitation of Reinforced Concrete with Electromigration Method

  • Chonggen Pan,
  • Jianghong Mao,
  • Weiliang Jin

DOI
https://doi.org/10.3390/ma13020398
Journal volume & issue
Vol. 13, no. 2
p. 398

Abstract

Read online

Steel bars embedded in reinforced concrete are vulnerable to corrosion in high chloride environments. Bidirectional electromigration rehabilitation (BIEM) is a novel method to enhance the durability of reinforced concrete by extracting chloride out of concrete and introducing an inhibitor to the surface of the steel bar under the action of an electric field. During the migration process, a higher ionization capacity of the inhibitor with a symmetrical molecular structure was introduced. A new imidazoline inhibitor was, therefore, employed in this study due to its great ionization capacity. The effect of imidazoline and triethylenetetramine inhibitor on chloride migration, corrosion potential, and strength of concrete were explored. The research results showed that the effect of chloride extraction and electrochemical chloride extraction made no significant difference on the surface of the concrete, where chloride extraction efficiency was more than 70%, and the chloride extraction efficiency was more than 90% around the location of the steel. while a dry-wet cycle test, the potential of concrete increased by about 200 mV by mixing imidazoline inhibitor. The imidazoline inhibitor was found to be effective at facilitating chloride migration and ameliorating corrosion, meanwhile, it had a negligible impact on the concrete’s strength.

Keywords