Thermal Conduction Simulation Based on Reconstructed Digital Rocks with Respect to Fractures
Haiyuan Yang,
Li Zhang,
Ronghe Liu,
Xianli Wen,
Yongfei Yang,
Lei Zhang,
Kai Zhang,
Roohollah Askari
Affiliations
Haiyuan Yang
Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, P.R. China & Research Center of Multiphase Flow in Porous Media, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Li Zhang
Geological Exploration & Development Research Institute, CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610051, China
Ronghe Liu
Geological Exploration & Development Research Institute, CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610051, China
Xianli Wen
Engineering Technology Research Institute of Xinjiang Oilfield Company, Wulumuqi 834000, China
Yongfei Yang
Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, P.R. China & Research Center of Multiphase Flow in Porous Media, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Lei Zhang
Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, P.R. China & Research Center of Multiphase Flow in Porous Media, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Kai Zhang
Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, P.R. China & Research Center of Multiphase Flow in Porous Media, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Roohollah Askari
Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA
Effective thermal conductivity (ETC), as a necessary parameter in the thermal properties of rock, is affected by the pore structure and the thermal conduction conditions. To evaluate the effect of fractures and saturated fluids on sandstone’s thermal conductivity, we simulated thermal conduction along three orthogonal (X, Y, and Z) directions under air- and water-saturated conditions on reconstructed digital rocks with different fractures. The results show that the temperature distribution is separated by the fracture. The significant difference between the thermal conductivities of solid and fluid is the primary factor influencing the temperature distribution, and the thermal conduction mainly depends on the solid phase. A nonlinear reduction of ETC is observed with increasing fracture length and angle. Only when the values of the fracture length and angle are large, a negative effect of fracture aperture on the ETC is apparent. Based on the partial least squares (PLS) regression method, the fluid thermal conductivity shows the greatest positive influence on the ETC value. The fracture length and angle are two other factors significantly influencing the ETC, while the impact of fracture aperture may be ignored. We obtained a predictive equation of ETC which considers the related parameters of digital rocks, including the fracture length, fracture aperture, angle between the fracture and the heat flux direction, porosity, and the thermal conductivity of saturated fluid.