Discussiones Mathematicae Graph Theory (Aug 2020)

Power Domination in the Generalized Petersen Graphs

  • Zhao Min,
  • Shan Erfang,
  • Kang Liying

DOI
https://doi.org/10.7151/dmgt.2137
Journal volume & issue
Vol. 40, no. 3
pp. 695 – 712

Abstract

Read online

The problem of monitoring an electric power system by placing as few measurement devices in the system can be formulated as a power dominating set problem in graph theory. The power domination number of a graph is the minimum cardinality of a power dominating set. Xu and Kang [On the power domination number of the generalized Petersen graphs, J. Comb. Optim. 22 (2011) 282–291] study the exact power domination number for the generalized Petersen graph P (3k, k), and propose the following problem: determine the power domination number for the generalized Petersen graph P (4k, k) or P (ck, k). In this paper we give the power domination number for P (4k, k) and present a sharp upper bound on the power domination number for the generalized Petersen graph P (ck, k).

Keywords