Clinical and Translational Medicine (Nov 2018)
Oncolytic viruses and checkpoint inhibitors: combination therapy in clinical trials
Abstract
Abstract Advances in the understanding of cancer immunotherapy and the development of multiple checkpoint inhibitors have dramatically changed the current landscape of cancer treatment. Recent large-scale phase III trials (e.g. PHOCUS, OPTiM) are establishing use of oncolytic viruses as another tool in the cancer therapeutics armamentarium. These viruses do not simply lyse cells to achieve their cancer-killing effects, but also cause dramatic changes in the tumor immune microenvironment. This review will highlight the major vector platforms that are currently in development (including adenoviruses, reoviruses, vaccinia viruses, herpesviruses, and coxsackieviruses) and how they are combined with checkpoint inhibitors. These vectors employ a variety of engineered capsid modifications to enhance infectivity, genome deletions or promoter elements to confer selective replication, and encode a variety of transgenes to enhance anti-tumor or immunogenic effects. Pre-clinical and clinical data have shown that oncolytic vectors can induce anti-tumor immunity and markedly increase immune cell infiltration (including cytotoxic CD8+ T cells) into the local tumor microenvironment. This “priming” by the viral infection can change a ‘cold’ tumor microenvironment into a ‘hot’ one with the influx of a multitude of immune cells and cytokines. This alteration sets the stage for subsequent checkpoint inhibitor delivery, as they are most effective in an environment with a large lymphocytic infiltrate. There are multiple ongoing clinical trials that are currently combining oncolytic viruses with checkpoint inhibitors (e.g. CAPTIVE, CAPRA, and Masterkey-265), and the initial results are encouraging. It is clear that oncolytic viruses and checkpoint inhibitors will continue to evolve together as a combination therapy for multiple types of cancers.
Keywords