Antibiotics (Jul 2022)
Tetracycline, Macrolide and Lincosamide Resistance in <i>Streptococcus canis</i> Strains from Companion Animals and Its Genetic Determinants
Abstract
Growing antimicrobial resistance (AMR) in companion-animal pathogens, including Streptococcus canis (S. canis), is a significant concern for pet treatment as well for public health. Despite the importance of S. canis in veterinary and human medicine, studies concerning the AMR of this bacterium are still scarce. A total of 65 S. canis strains, isolated from dogs and cats, were assessed to test for susceptibility to six clinically relevant antimicrobials via a microdilution method. The prevalence of the selected acquired-resistance genes was also investigated via PCR. High MIC50 and MIC90 values (≥128 μg/mL) were noted for tetracycline, erythromycin and clindamycin. Only a few strains were resistant to the tested beta-lactams (6.2%). Tetracycline resistance was found in 66.2% of the strains. Resistance to erythromycin and clindamycin (ML resistance) was found in 55.4% of the strains. Strains with a phenotype showing concurrent resistance to tetracycline and ML were predominant (53.8%). AMR in the tested S. canis strains was associated with a variety of acquired and potentially transferable genes. Tetracycline resistance was conferred by tet(O) (40.0%), tet(M) (9.2%), and tet(T) (1.5%), which is reported for the first time in S. canis. In most cases, the tet(M) gene was detected in relation to the conjugative transposon Tn916. The MLSB phenotype was confirmed in the strains harboring erm(B) (43.1%) and erm(TR) (7.7%). To conclude, a high rate of S. canis strains occurring in dogs and cats displayed resistance to antimicrobials important for treatment; moreover, they are a potential reservoirs of various resistance determinants. Therefore, AMR in these pathogens should be continuously monitored, especially regarding the One Health concept.
Keywords