Results in Physics (Jan 2017)

Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO2/Si structure at room temperature

  • G. Behzadi pour,
  • L. Fekri aval

Journal volume & issue
Vol. 7
pp. 1993 – 1999

Abstract

Read online

In this study, fabrication of highly sensitive PdNPs/SiO2/Si hydrogen gas sensor using experimental and theoretical methods has been investigated. Using chemical method the PdNPs are synthesized and characterized by X-ray diffraction (XRD). The average size of PdNPs is 11 nm. The thickness of the oxide film was 20 nm and the surface of oxide film analyzed using Atomic-force microscopy (AFM). The C-V curve for the PdNPs/SiO2/Si hydrogen gas sensor in 1% hydrogen concentration and at the room temperature has been reported. The response time and recovery time for 1% hydrogen concentration at room temperature were 1.2 s and 10 s respectively. The response (R%) for PdNPs/SiO2/Si MOS capacitor hydrogen sensor was 96%. The PdNPs/SiO2/Si MOS capacitor hydrogen sensor showed very fast response and recovery times compared to SWCNTs/PdNPs, graphene/PdNPs, nanorod/PdNPs and nanowire/PdNPs hydrogen gas sensors. Keywords: Sensitive, Oxide film, Capacitive, Resistance