The Astrophysical Journal Letters (Jan 2023)

Correlating High-energy IceCube Neutrinos with 5BZCAT Blazars and RFC Sources

  • Chiara Bellenghi,
  • Paolo Padovani,
  • Elisa Resconi,
  • Paolo Giommi

DOI
https://doi.org/10.3847/2041-8213/acf711
Journal volume & issue
Vol. 955, no. 2
p. L32

Abstract

Read online

We investigate the possibility that blazars in the Roma-BZCAT Multifrequency Catalogue of Blazars (5BZCAT) are sources of the high-energy astrophysical neutrinos detected by the IceCube Neutrino Observatory, as recently suggested by Buson et al. Although we can reproduce their ∼4.5 σ result, which applies to 7 yr of neutrino data in the southern sky, we find no significant correlation with 5BZCAT sources when extending the search to the northern sky, where IceCube is most sensitive to astrophysical signals. To further test this scenario, we use a larger sample consisting of 10 yr of neutrino data recently released by the IceCube Collaboration, this time finding no significant correlation in neither the southern nor the northern sky. These results suggest that the strong correlation reported by Buson et al. using 5BZCAT could be due to a statistical fluctuation and possibly the spatial and flux nonuniformities in the blazar sample. We perform some additional correlation tests using the more uniform, flux-limited, and blazar-dominated Radio Fundamental Catalogue and find a ∼3.2 σ equivalent p -value when correlating it with the 7 yr southern neutrino sky. However, this correlation disappears completely when extending the analysis to the northern sky and when analyzing 10 yr of all-sky neutrino data. Our findings support a scenario where the contribution of the whole blazar class to the IceCube signal is relevant but not dominant, in agreement with most previous studies.

Keywords