Royal Society Open Science (Mar 2020)

Inner surface of Nepenthes slippery zone: ratchet effect of lunate cells causes anisotropic superhydrophobicity

  • Lixin Wang,
  • Shuoyan Zhang,
  • Shanshan Li,
  • Shixing Yan,
  • Shiyun Dong

DOI
https://doi.org/10.1098/rsos.200066
Journal volume & issue
Vol. 7, no. 3

Abstract

Read online

Inner surface of Nepenthes slippery zone shows anisotropic superhydrophobic wettability. Here, we investigate what factors cause the anisotropy via sliding angle measurement, morphology/structure observation and model analysis. Static contact angle of ultrapure-water droplet exhibits the value of 154.80°–156.83°, and sliding angle towards pitcher bottom and up is 2.82 ± 0.45° and 5.22 ± 0.28°, respectively. The slippery zone under investigation is covered by plenty of lunate cells with both ends bending downward, and a dense layer of wax coverings without directional difference in morphology/structure. Results indicate that the slippery zone has a considerable anisotropy in superhydrophobic wettability that is most likely caused by the lunate cells. A model was proposed to quantitatively analyse how the structure characteristics of lunate cells affect the anisotropic superhydrophobicity, and found that the slope/precipice structure of lunate cells forms a ratchet effect to cause ultrapure-water droplet to roll towards pitcher bottom/up in different order of difficulty. Our investigation firstly reveals the mechanism of anisotropic superhydrophobic wettability of Nepenthes slippery zone, and inspires the bionic design of superhydrophobic surfaces with anisotropic properties.

Keywords