Kidney Medicine (Nov 2021)

Phosphate Absorption and Hyperphosphatemia Management in Kidney Disease: A Physiology-Based Review

  • Steven N. Fishbane,
  • Sagar Nigwekar

Journal volume & issue
Vol. 3, no. 6
pp. 1057 – 1064

Abstract

Read online

Phosphate absorption occurs in the gastrointestinal tract through paracellular absorption and transcellular transport. The paracellular pathway does not saturate and has a significantly higher absorption capacity than does the transcellular pathway. Evidence indicates that this pathway is the primary mechanism of intestinal phosphate absorption, particularly with Western diets containing high amounts of phosphorus. Elevated serum phosphorus concentrations are associated with cardiovascular morbidity and mortality but serum phosphorus concentrations > 5.5 mg/dL are highly prevalent despite best efforts with dietary phosphate restriction, dialysis, and the use of phosphate binders. The efficacy of phosphate binders may be inherently limited because the mechanism of action does not target any phosphate absorption pathway. Thus, therapeutic innovations are needed to address the limitations of phosphate binders. Novel therapies leveraging new mechanistic understandings of phosphate absorption and the primacy of the paracellular pathway may improve phosphate control. Phosphate absorption inhibitors that target the pathway are a novel therapeutic class. Tenapanor is an investigational first-in-class nonbinder phosphate absorption inhibitor that inhibits the sodium-hydrogen exchanger isoform 3 to reduce paracellular permeability specific to phosphate. Phosphate absorption inhibitors may represent a new mechanistic approach to phosphate management with the potential to improve clinical outcomes.

Keywords