PLoS ONE (Jan 2018)

Uncertainty modulated exploration in the trade-off between sensing and acting.

  • Sonal Sengupta,
  • W Pieter Medendorp,
  • Peter Praamstra,
  • Luc P J Selen

DOI
https://doi.org/10.1371/journal.pone.0199544
Journal volume & issue
Vol. 13, no. 7
p. e0199544

Abstract

Read online

Many sensorimotor activities have a time constraint for successful completion. In this case, any time devoted to sensory processing is at the expense of time available for motor execution. Earlier studies have explored how this competition between sensory processing and motor execution is resolved by using experimental designs that segregate the sensing and acting phase of the task. It was found that participants switch from the sensing to the acting stage such that the overall (sensorimotor) uncertainty in the outcome of the task is minimized. An unexplained observation in these studies is the substantial variability in switching times. We investigated the variability in switching time by correlating it with the underlying sensorimotor uncertainty. To this end, we used a modified version of the virtual ball catching paradigm proposed by Faisal & Wolpert (2009). Subjects were instructed to catch a ball, but as soon as they initiated their movement the ball disappeared. We extended the range of horizontal velocities and used two different start positions of the ball to quantify the dependence of sensory uncertainty on ball velocity. Velocity dependence of sensory uncertainty allowed us to manipulate sensory uncertainty and hence the sensorimotor uncertainty. We found that the variability in switching times is correlated with two factors. Firstly, variability in switching times is greater when variation in switching time has only minimal effects on sensorimotor uncertainty. Secondly, variability in switching times is greater when the sensorimotor uncertainty is larger. Our results suggest that the variability in switching time reflects an uncertainty-driven exploratory process.