Nonlinear Processes in Geophysics (May 2020)

Nonlinear vortex solution for perturbations in the Earth's ionosphere

  • M. Vukcevic,
  • L. Č. Popović

DOI
https://doi.org/10.5194/npg-27-295-2020
Journal volume & issue
Vol. 27
pp. 295 – 306

Abstract

Read online

There is much observational evidence of different fine structures in the ionosphere and magnetosphere of the Earth. Such structures are created and evolve as a perturbation of the ionosphere's parameters. Instead of dealing with a number of linear waves, we propose to investigate and follow up the perturbations in the ionosphere by dynamics of soliton structure. Apart from the fact that this is a more accurate solution, the advantage of soliton solution is its localization in space and time as a consequence of the balance between nonlinearity and dispersion. The existence of such a structure is driven by the properties of the medium. We derive the necessary condition for having a nonlinear soliton wave, taking the vortex shape as a description of the ionosphere parameter perturbation. We employ a magnetohydrodynamical description for the ionosphere in plane geometry, including rotational effects, magnetic field effects via ponderomotive force, and pressure and gravitational potential effects, treating the problem self-consistently and nonlinearly. In addition, we consider compressible perturbation. As a result, we have found that Coriolis force and magnetic force on the one hand and pressure and gravity on the other hand determine dispersive properties. Dispersion at higher latitudes is mainly driven by rotation, while near the Equator, within the E and F layers of the ionosphere, the magnetic field modifies the soliton solution. Also, a very general description of the ionosphere results in the conclusion that the unperturbed thickness of the ionosphere layer cannot be taken as an ad hoc assumption: it is rather a consequence of equilibrium property, which is shown in this calculation.