Sensors (Mar 2019)

Non-Targeted HPLC-UV Fingerprinting as Chemical Descriptors for the Classification and Authentication of Nuts by Multivariate Chemometric Methods

  • Guillem Campmajó,
  • Gemma J. Navarro,
  • Nerea Núñez,
  • Lluís Puignou,
  • Javier Saurina,
  • Oscar Núñez

DOI
https://doi.org/10.3390/s19061388
Journal volume & issue
Vol. 19, no. 6
p. 1388

Abstract

Read online

Recently, the authenticity of food products has become a great social concern. Considering the complexity of the food chain and that many players are involved between production and consumption; food adulteration practices are rising as it is easy to conduct fraud without being detected. This is the case for nut fruit processed products, such as almond flours, that can be adulterated with cheaper nuts (hazelnuts or peanuts), giving rise to not only economic fraud but also important effects on human health. Non-targeted HPLC-UV chromatographic fingerprints were evaluated as chemical descriptors to achieve nut sample characterization and classification using multivariate chemometric methods. Nut samples were extracted by sonication and centrifugation, and defatted with hexane; extracting procedure and conditions were optimized to maximize the generation of enough discriminant features. The obtained HPLC-UV chromatographic fingerprints were then analyzed by means of principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to carry out the classification of nut samples. The proposed methodology allowed the classification of samples not only according to the type of nut but also based on the nut thermal treatment employed (natural, fried or toasted products).

Keywords