Crystals (Aug 2020)

Fabrication of Poly(pentaerythritol tetrakis (3-mercaptopropionate)/dipentaerythritol penta-/hexa-acrylate)HIPEs Macroporous Scaffold with Alpha Hydroxyapatite via Photopolymerization for Fibroblast Regeneration

  • Muhammad Imran Azman,
  • Nunthawan Kwangsawart,
  • Jitima Preechawong,
  • Manit Nithitanakul,
  • Pornsri Sapsrithong

DOI
https://doi.org/10.3390/cryst10090746
Journal volume & issue
Vol. 10, no. 9
p. 746

Abstract

Read online

Synthetic biomaterials that can be structured into porous scaffolds for support cell growth have played a role in developing the field of tissue engineering. This research focused on combination of biodegradable emulsion template along with the assisting of low-cost polymerization reaction. The appendage of ester-based surfactant, Hypermer B246, played a vital role which gave an outstanding dispersion in HIPEs system and degradability. PolyHIPEs were prepared by using domestic ultraviolet light source for producing a multiscale porosity material. The morphology showed a promising result of poly(pentaerythritol tetrakis (3-mercaptopropionate)/dipentaerythritol penta-/hexa-acrylate)HIPEs with varied Hypermer B246 surfactant concentration resulting in the pores size increased in between 51.2 ± 9.8 µm to 131.4 ± 26.32 µm. Cellular moieties of poly(TT/DPEHA) HIPEs were confirmed by using SEM while inclusion of hydroxyapatite were confirmed by SEM, FTIR and EDX-SEM and quantified by thermogravimetric analysis. The maximum stress and compressive modulus of the obtained materials were significantly enhanced with HA up to five percent by weight. Poly(TT/DPEHA)HIPEs with HA showed the ability for the cell attachment and the adhesion/proliferation of the cells, suggested that poly(TT/DPEHA) HIPEs with HA were suitable for biomaterial application.

Keywords