Metals (Dec 2020)

The Interaction between Grains during Columnar-to-Equiaxed Transition in Laser Welding: A Phase-Field Study

  • Lingda Xiong,
  • Chunming Wang,
  • Zhimin Wang,
  • Ping Jiang

DOI
https://doi.org/10.3390/met10121647
Journal volume & issue
Vol. 10, no. 12
p. 1647

Abstract

Read online

A phase-field model was applied to study CET (columnar-to-equiaxed transition) during laser welding of an Al-Cu model alloy. A parametric study was performed to investigate the effects of nucleation undercooling for the equiaxed grains, nucleation density and location of the first nucleation seed ahead of the columnar front on the microstructure of the fusion zone. The numerical results indicated that nucleation undercooling significantly influenced the occurrence and the time of CET. Nucleation density affected the occurrence of CET and the size of equiaxed grains. The dendrite growth behavior was analyzed to reveal the mechanism of the CET. The interactions between different grains were studied. Once the seeds ahead of the columnar dendrites nucleated and grew, the columnar dendrite tip velocity began to fluctuate around a value. It did not decrease until the columnar dendrite got rather close to the equiaxed grains. The undercooling and solute segregation profile evolutions of the columnar dendrite tip with the CET and without the CET had no significant difference before the CET occurred. Mechanical blocking was the major blocking mechanism for the CET. The equiaxed grains formed first were larger than the equiaxed grains formed later due to the decreasing of undercooling. The size of equiaxed grain decreased from fusion line to center line. The numerical results were basically consistent with the experimental results obtained by laser welding of a 2A12 Al-alloy.

Keywords