Translational Psychiatry (Feb 2021)
Using mitochondrial respiration inhibitors to design a novel model of bipolar disorder-like phenotype with construct, face and predictive validity
Abstract
Abstract We mimicked mild mitochondrial-distress robustly reported in bipolar-disorder (BD) by chronic exposure to uniquely low doses of inhibitors of mitochondrial-respiration complexes in vitro and in vivo. Exposure of the neuronal-originating SH-SY5Y cells to very low dose (10 pM) rotenone, a mitochondrial-respiration complex (Co)I inhibitor, for 72 or 96 h did not affect cell viability and reactive oxygen species (ROS) levels. Yet, it induced a dual effect on mitochondrial-respiration: overshooting statistically significant several-fold increase of most oxygen-consumption-rate (OCR) parameters vs. significantly decreased all OCR parameters, respectively. Chronic low doses of 3-nitropropionic acid (3-NP) (CoII inhibitor) did not induce long-lasting changes in the cells’ mitochondria-related parameters. Intraperitoneal administration of 0.75 mg/kg/day rotenone to male mice for 4 or 8 weeks did not affect spontaneous and motor activity, caused behaviors associated with mania and depression following 4 and 8 weeks, respectively, accompanied by relevant changes in mitochondrial basal OCR and in levels of mitochondrial-respiration proteins. Our model is among the very few BD-like animal models exhibiting construct (mild mitochondrial dysfunction), face (decreased/increased immobility time in the forced-swim test, increased/decreased consumption of sweet solution, increased/decreased time spent in the open arms of the elevated plus maze) and predictive (reversal of rotenone-induced behavioral changes by lithium treatment) validity. Our rotenone regime, employing doses that, to the best of our knowledge, have never been used before, differs from those inducing Parkinson’s-like models by not affecting ROS-levels and cell-viability in vitro nor motor activity in vivo.