Sensors (Mar 2025)

Dual-Mode Visual System for Brain–Computer Interfaces: Integrating SSVEP and P300 Responses

  • Ekgari Kasawala,
  • Surej Mouli

DOI
https://doi.org/10.3390/s25061802
Journal volume & issue
Vol. 25, no. 6
p. 1802

Abstract

Read online

In brain–computer interface (BCI) systems, steady-state visual-evoked potentials (SSVEP) and P300 responses have achieved widespread implementation owing to their superior information transfer rates (ITR) and minimal training requirements. These neurophysiological signals have exhibited robust efficacy and versatility in external device control, demonstrating enhanced precision and scalability. However, conventional implementations predominantly utilise liquid crystal display (LCD)-based visual stimulation paradigms, which present limitations in practical deployment scenarios. This investigation presents the development and evaluation of a novel light-emitting diode (LED)-based dual stimulation apparatus designed to enhance SSVEP classification accuracy through the integration of both SSVEP and P300 paradigms. The system employs four distinct frequencies—7 Hz, 8 Hz, 9 Hz, and 10 Hz—corresponding to forward, backward, right, and left directional controls, respectively. Oscilloscopic verification confirmed the precision of these stimulation frequencies. Real-time feature extraction was accomplished through the concurrent analysis of maximum Fast Fourier Transform (FFT) amplitude and P300 peak detection to ascertain user intent. Directional control was determined by the frequency exhibiting maximal amplitude characteristics. The visual stimulation hardware demonstrated minimal frequency deviation, with error differentials ranging from 0.15% to 0.20% across all frequencies. The implemented signal processing algorithm successfully discriminated between all four stimulus frequencies whilst correlating them with their respective P300 event markers. Classification accuracy was evaluated based on correct task intention recognition. The proposed hybrid system achieved a mean classification accuracy of 86.25%, coupled with an average ITR of 42.08 bits per minute (bpm). These performance metrics notably exceed the conventional 70% accuracy threshold typically employed in BCI system evaluation protocols.

Keywords