Advances in Pharmacological and Pharmaceutical Sciences (Jan 2020)
Hydroethanolic Stem Bark Extract of Burkea africana Attenuates Vincristine-Induced Peripheral Neuropathy in Rats
Abstract
Context. The stem bark of the savanna tree Burkea africana (Hook) (family: Leguminosae) is used in the Ghanaian traditional medicine for the management of various pain-related diseases. Objective. This study seeks to investigate the possible antiallodynic and antihyperalgesic effects of the hydroethanolic stem bark extract of B. africana in a vincristine-induced peripheral neuropathy model in rats. Materials and Methods. 0.1 mg kg−1 vincristine was administered intraperitoneally for 5 days followed by 2 days break and continued for another 5 days to establish peripheral neuropathy in Sprague Dawley rats. Effects of Burkea africana extract (BAE) (50–1000 mg kg−1, p.o.) and pregabalin (10–100 mg kg−1, i.p.) were assessed on tactile, intermediate, mechanical, cold, and hot allodynia as well as in the Randall–Sellito test. Moreover, the levels of total proteins, malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) in sciatic nerve tissue homogenates were assayed. Results. BAE (50–1000 mg kg−1p.o.) showed significant antiallodynic and antihyperalgesic effects similar to pregabalin by increasing paw withdrawal latency and paw withdrawal threshold in all the behavioral tests used. Also, the extract decreased the levels of MDA (a lipid peroxidation product) as well as MPO and caused a significant increase in endogenous antioxidants (GSH) and antioxidant enzymes (SOD and CAT) in tissue homogenates of treated rats. Conclusions. Results from this study indicate that the hydroethanolic stem bark extract of B. africana exhibits antiallodynic and antihyperalgesic effects in vincristine-induced peripheral neuropathy in rats.