Energies (Feb 2015)

Research on Shaft Subsynchronous Oscillation Characteristics of Parallel Generators and SSDC Application in Mitigating SSO of Multi-Generators

  • Shen Wang,
  • Zheng Xu

DOI
https://doi.org/10.3390/en8031644
Journal volume & issue
Vol. 8, no. 3
pp. 1644 – 1662

Abstract

Read online

Subsynchronous oscillation (SSO) of generators caused by high voltage direct current (HVDC) systems can be solved by applying supplemental subsynchronous damping controller (SSDC). SSDC application in mitigating SSO of single-generator systems has been studied intensively. This paper focuses on SSDC application in mitigating SSO of multi-generator systems. The phase relationship of the speed signals of the generators under their common mechanical natural frequencies is a key consideration in SSDC design. The paper studies in detail the phase relationship of the speed signals of two generators in parallel under their shared mechanical natural frequency, revealing regardless of whether the two generators are identical or not, there always exists a common-mode and an anti-mode under their common natural frequency, and the phase relationship of the speed signals of the generators depends on the extent to which the anti-mode is stimulated. The paper further demonstrates that to guarantee the effectiveness of SSDC, the anti-phase mode component of its input signal should be eliminated. Based on the above analysis, the paper introduces the design process of SSDC for multi-generator systems and verifies its effectiveness through simulation in Power Systems Computer Aided Design/Electromagnetic Transients including Direct Current (PSCAD/EMTDC).

Keywords