Heliyon (Dec 2023)
A multi-spectroscopic and molecular docking approach for DNA/protein binding study and cell viability assay of first-time reported pendent azide bearing Cu(II)-quercetin and dicyanamide bearing Zn(II)-quercetin complexes
Abstract
In the current study, one new quercetin-based Zn(II) complex [Zn(Qr)(CNNCN)(H2O)2] (Complex 1) which is developed by condensation of quercetin with ZnCl2 in the presence of NaN(CN)2 and Cu(II) complex [Cu(Qr)N3(CH3OH)(H2O)] (complex 2) which is developed by the condensation reaction of quercetin and CuCl2 in presence of NaN3, are thoroughly examined in relation to their use in biomedicine. The results of several spectroscopic studied confirm the structure of both the complexes and the Density Functional Theory (DFT) study helps to optimize the structure of complex 1 and 2. After completion of the identification process, DNA and Human Serum Albumin (HSA) binding efficacy of both the investigated complexes are performed by implementing a long range of biophysical studies and a thorough analysis of the results unveils that complex 1 has better interaction efficacy with the macromolecules than complex 2. The binding efficacy of complex 1 is comparatively higher towards both macromolecules because of its pure groove binding mode during interaction with DNA and the presence of an extra H-bond during connection with HSA. The experimental host-guest binding results is fully validated by molecular docking study. Interestingly complex 1 shows better antioxidant properties than complex 2, as well as quercetin, and it has strong anticancer property with minimal damage to normal cells, which is proved by the MTT assay study. Better DNA and HSA binding efficacy of 1 may be the reason for the better anticancer property of complex 1.