Sensors (Jun 2024)

Extraction and Validation of Biomechanical Gait Parameters with Contactless FMCW Radar

  • Linyu Wang,
  • Zhongfei Ni,
  • Binke Huang

DOI
https://doi.org/10.3390/s24134184
Journal volume & issue
Vol. 24, no. 13
p. 4184

Abstract

Read online

A 77 GHz frequency-modulated continuous wave (FMCW) radar was utilized to extract biomechanical parameters for gait analysis in indoor scenarios. By preprocessing the collected raw radar data and eliminating environmental noise, a range–velocity–time (RVT) data cube encompassing the subjects’ information was derived. The strongest signals from the torso in the velocity and range dimensions and the enveloped signal from the toe in the velocity dimension were individually separated for the gait parameters extraction. Then, six gait parameters, including step time, stride time, step length, stride length, torso velocity, and toe velocity, were measured. In addition, the Qualisys system was concurrently utilized to measure the gait parameters of the subjects as the ground truth. The reliability of the parameters extracted by the radar was validated through the application of the Wilcoxon test, the intraclass correlation coefficient (ICC) value, and Bland–Altman plots. The average errors of the gait parameters in the time, range, and velocity dimensions were less than 0.004 s, 0.002 m, and 0.045 m/s, respectively. This non-contact radar modality promises to be employable for gait monitoring and analysis of the elderly at home.

Keywords