BMC Research Notes (Sep 2009)

Two adjacent nuclear factor-binding domains activate expression from the human <it>PRNP </it>promoter

  • Vostrov Alexander A,
  • Izkhakov Nerik,
  • Taheny Michael J,
  • Quitschke Wolfgang W

DOI
https://doi.org/10.1186/1756-0500-2-178
Journal volume & issue
Vol. 2, no. 1
p. 178

Abstract

Read online

Abstract Background The transmissible spongiform encephalopathies (TSEs) comprise a group of fatal degenerative neurological diseases in humans and other mammals. After infection, the cellular prion protein isoform PrPC is converted to the pathological PrPSC scrapie isoform. The continued conversion of PrPC to PrPSC requires de novo endogenous PrP synthesis for disease progression. The human prion protein gene (PRNP) promoter was therefore investigated to identify regulatory elements that could serve as targets for therapeutic intervention. Findings The human prion protein gene (PRNP) promoter from position -1593 to +134 relative to the putative transcriptional start site (+1) was analyzed by transient transfection in HeLa cells. Deletions from the 5' end between positions -1593 and -232 yielded little change in activity. A further 5' deletion at position -90 resulted in a decline in activity to a level of about 30% of the full-length value. DNase I footprinting of the region between positions -259 and +2 identified two adjacent protected domains designated as prpA (-116 to -143) and prpB (-147 to -186). Internal deletions combined with mobility shift electrophoresis and methylation interference assays indicated the presence of sequence specific nuclear factor complexes that bind to the prpA and prpB domains and activate expression from the human PRNP promoter in an additive fashion. Conclusion Results from transient transfection, DNase I footprinting, mobility shift electrophoresis, and methylation interference experiments suggest that two DNase I protected domains designated as prpA and prpB are binding sites for as yet unidentified regulatory factors that independently activate expression from the PRNP promoter.