Nature Communications (Apr 2021)

Democratising deep learning for microscopy with ZeroCostDL4Mic

  • Lucas von Chamier,
  • Romain F. Laine,
  • Johanna Jukkala,
  • Christoph Spahn,
  • Daniel Krentzel,
  • Elias Nehme,
  • Martina Lerche,
  • Sara Hernández-Pérez,
  • Pieta K. Mattila,
  • Eleni Karinou,
  • Séamus Holden,
  • Ahmet Can Solak,
  • Alexander Krull,
  • Tim-Oliver Buchholz,
  • Martin L. Jones,
  • Loïc A. Royer,
  • Christophe Leterrier,
  • Yoav Shechtman,
  • Florian Jug,
  • Mike Heilemann,
  • Guillaume Jacquemet,
  • Ricardo Henriques

DOI
https://doi.org/10.1038/s41467-021-22518-0
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 18

Abstract

Read online

Deep learning methods show great promise for the analysis of microscopy images but there is currently an accessibility barrier to many users. Here the authors report a convenient entry-level deep learning platform that can be used at no cost: ZeroCostDL4Mic.