Remote Sensing (May 2017)
Optimizing Semi-Analytical Algorithms for Estimating Chlorophyll-a and Phycocyanin Concentrations in Inland Waters in Korea
Abstract
Several semi-analytical algorithms have been developed to estimate the chlorophyll-a (Chl-a) and phycocyanin (PC) concentrations in inland waters. This study aimed at identifying the influence of algorithm parameters on the output variables and searching optimal parameter values. The optimal parameters of seven semi-analytical algorithms were applied to estimate the Chl-a and PC concentrations. The absorption coefficient measurements were coupled with pigment measurements to calibrate the algorithm parameters. For sensitivity analysis, the elementary effect test was conducted to analyze the influence of the algorithm parameters. The sensitivity analysis results showed that the parameters in the Y function and specific absorption coefficient were the most sensitive parameters. Then, the parameters were optimized via a single-objective optimization that involved one objective function being minimized and a multi-objective optimization that contained more than one objective function. The single-objective optimization led to substantial errors in absorption coefficients. In contrast, the multi-objective optimization improved the algorithm performance with respect to both the absorption coefficient estimates and pigment concentration estimates. The optimized parameters of the absorption coefficient reflected the high-particulate content in waters of the Baekje reservoir using an infrared backscattering wavelength and relatively high value of Y. Moreover, the results indicate the value of measuring the site-specific absorption if site-specific optimization of semi-analyical algorithm parameters was envisioned.
Keywords