Molecular Plant-Microbe Interactions (Jan 1998)

NodFE-Dependent Fatty Acids That Lack an α-β Unsaturation Are Subject to Differential Transfer, Leading to Novel Phospholipids

  • Otto Geiger,
  • John Glushka,
  • Ben J. J. Lugtenberg,
  • Herman P. Spaink,
  • Jane E. Thomas-Oates

DOI
https://doi.org/10.1094/MPMI.1998.11.1.33
Journal volume & issue
Vol. 11, no. 1
pp. 33 – 44

Abstract

Read online

In Rhizobium leguminosarum, the nodABC and nodFEL operons are involved in the production of lipo-chitin oligosaccharide signals that mediate host specificity. A nodFE-determined, highly unsaturated C18:4 fatty acid (trans-2, trans-4, trans-6, cis-11-octadecatetraenoic acid) is essential for the ability of the signals to induce nodule meristems and pre-infection thread structures on the host plant Vicia sativa. Of the nod genes, induction of only nodFE is sufficient to modify fatty acid biosynthesis to yield trans-2, trans-4, trans-6, cis-11-octadeca-tetraenoic acid, with an absorbance maximum of 303 nm. This unusual C18:4 fatty acid is not only found in the lipo-chitin oligosaccharides but is also associated with the phospholipids (O. Geiger, J. E. Thomas-Oates, J. Glushka, H. P. Spaink, and B. J. J. Lugtenberg, 1994, J. Biol. Chem. 269:11090-11097). Here we report that the phospholipids can contain other nodFE-derived fatty acids, a C18:3 trans-4, trans-6, cis-11-octadecatrienoic acid that has a characteristic absorption maximum at 225 nm, and a C18:2 octadecadienoic acid. Neither this C18:3 nor this C18:2 fatty acid has to date been observed attached to lipo-chitin oligosaccharides, suggesting that an as yet unknown acyl transferase (presumably NodA), responsible for the transfer of the fatty acyl chain to the glycan backbone of the lipo-chitin oligosaccharides, does not transfer all fatty acids synthesized by the action of NodFE to the lipo-chitin oligosaccharides. Rather, it must have a preference for α-β unsaturated fatty acids during transfer.