PLoS ONE (Jan 2022)
Larval dispersal of Brachyura in one of the largest estuarine/marine systems in the world.
Abstract
The Amazon Continental Shelf (ACS) is a complex habitat that receives a large annual freshwater discharge into the ocean, producing a superficial plume and carrying with it large amounts of nutrients to the continental shelf along thousands of kilometers while sustaining high biodiversity in the estuary-ocean continuum. For the first time, this study monitored six sites in a wide transect with approximately 240 km radius on the ACS every 2-4 months. The objectives were (1) to analyze the composition of larval Brachyuran crabs and (2) to predict the importance of environmental parameters (temperature, salinity and chlorophyll-a) in structuring their abundance. A total of 17,759 larvae identified were distributed in 8 families and 24 taxa. The water salinity was the best predictor of larval distribution. The statistical models used indicated that Panopeidae and Portunidae larvae are more frequent and more likely to occur in shallow water layers, while Calappidae occur in deeper layers, and Grapsidae, Ocypodidae, Sesarmidae, Pinnotheridae and Leucosiidae occur similarly in both strata. The larval dispersal extent varies among families and throughout the year while the groups are distributed in different salinities along the platform. The probability of occurrence of Portunidae is higher in ocean water (≥ 33.5); Grapsidae, Panopeidae, and Pinnotheridae is higher in intermediate and ocean salinity waters (25.5 to 33.5); Ocypodidae, Sesarmidae and Calappidae is higher in estuarine and intermediate salinity waters (5 to 25.5), whereas Leucosiidae, euryhaline, occur in all salinities (5 to 33.5). Furthermore, the Amazon River seasonal flow and plume movement throughout the year not only regulate the larval distribution and dispersion of estuarine species but are also fundamental for the ACS species, providing the necessary nutrient input for larval development in the region.