BMC Complementary and Alternative Medicine (Apr 2012)

Anti-atherosclerotic function of Astragali Radix extract: downregulation of adhesion molecules <it>in vitro</it> and <it>in vivo</it>

  • You Yang,
  • Duan Yan,
  • Liu Shao-wei,
  • Zhang Xiao-lin,
  • Zhang Xiu-li,
  • Feng Jia-tao,
  • Yan Cheng-hui,
  • Han Ya-ling

DOI
https://doi.org/10.1186/1472-6882-12-54
Journal volume & issue
Vol. 12, no. 1
p. 54

Abstract

Read online

Abstract Background Atherosclerosis is considered to be a chronic inflammatory disease. Astragali Radix extract (ARE) is one of the major active ingredients extracted from the root of Astragalus membranaceus Bge. Although ARE has an anti-inflammatory function, its anti-atherosclerotic effects and mechanisms have not yet been elucidated. Methods Murine endothelial SVEC4-10 cells were pretreated with different doses of ARE at different times prior to induction with tumor necrosis factor (TNF)-α. Cell adhesion assays were performed using THP-1 cells and assessed by enzyme-linked immunosorbent assay, western blotting and immunofluorescence analyses to detect the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), phosphorylated inhibitor of κB (p-iκB) and nuclear factor (NF)-κB. We also examined the effect of ARE on atherosclerosis in the aortic endothelium of apolipoprotein E-deficient (apoE−/−) mice. Results TNF-α strongly increased the expression of VCAM-1 and ICAM-1 accompanied by increased expression of p-iκB and NF-κB proteins. However, the expression levels of VCAM-1 and ICAM-1 were reduced by ARE in dose- and time-dependent manners, with the strongest effect at a dose of 120 μg/ml incubated for 4 h. This was accompanied by significantly decreased expression of p-iκB and inhibited activation of NF-κB. Immunofluorescence analysis also revealed that oral administration of ARE resulted in downregulation of adhesion molecules and decreased expression of macrophages in the aortic endothelium of apoE−/− mice. ARE could suppress the inflammatory reaction and inhibit the progression of atherosclerotic lesions in apoE−/− mice. Conclusion This study demonstrated that ARE might be an effective anti-inflammatory agent for the treatment of atherosclerosis, possibly acting via the decreased expression of adhesion molecules.

Keywords