European Physical Journal C: Particles and Fields (Sep 2019)

First results from the AMoRE-Pilot neutrinoless double beta decay experiment

  • V. Alenkov,
  • H. W. Bae,
  • J. Beyer,
  • R. S. Boiko,
  • K. Boonin,
  • O. Buzanov,
  • N. Chanthima,
  • M. K. Cheoun,
  • D. M. Chernyak,
  • J. S. Choe,
  • S. Choi,
  • F. A. Danevich,
  • M. Djamal,
  • D. Drung,
  • C. Enss,
  • A. Fleischmann,
  • A. M. Gangapshev,
  • L. Gastaldo,
  • Yu. M. Gavriljuk,
  • A. M. Gezhaev,
  • V. D. Grigoryeva,
  • V. I. Gurentsov,
  • O. Gylova,
  • C. Ha,
  • D. H. Ha,
  • E. J. Ha,
  • I. S. Hahn,
  • C. H. Jang,
  • E. J. Jeon,
  • J. A. Jeon,
  • H. S. Jo,
  • J. Kaewkhao,
  • C. S. Kang,
  • S. J. Kang,
  • W. G. Kang,
  • V. V. Kazalov,
  • S. Kempf,
  • A. Khan,
  • S. Khan,
  • D. Y. Kim,
  • G. W. Kim,
  • H. B. Kim,
  • H. J. Kim,
  • H. L. Kim,
  • H. S. Kim,
  • I. Kim,
  • S. C. Kim,
  • S. G. Kim,
  • S. K. Kim,
  • S. R. Kim,
  • W. T. Kim,
  • Y. D. Kim,
  • Y. H. Kim,
  • K. Kirdsiri,
  • Y. J. Ko,
  • V. V. Kobychev,
  • V. Kornoukhov,
  • V. V. Kuzminov,
  • D. H. Kwon,
  • C. Lee,
  • E. K. Lee,
  • H. J. Lee,
  • H. S. Lee,
  • J. S. Lee,
  • J. Y. Lee,
  • K. B. Lee,
  • M. H. Lee,
  • M. K. Lee,
  • S. W. Lee,
  • S. W. Lee,
  • S. H. Lee,
  • D. Leonard,
  • J. Li,
  • J. Li,
  • Y. Li,
  • P. Limkitjaroenporn,
  • E. P. Makarov,
  • S. Y. Oh,
  • Y. M. Oh,
  • S. L. Olsen,
  • A. Pabitra,
  • S. I. Panasenko,
  • I. Pandey,
  • C. W. Park,
  • H. K. Park,
  • H. S. Park,
  • K. S. Park,
  • S. Y. Park,
  • D. V. Poda,
  • O. G. Polischuk,
  • H. Prihtiadi,
  • S. J. Ra,
  • S. S. Ratkevich,
  • G. Rooh,
  • M. B. Sari,
  • K. M. Seo,
  • J. W. Shin,
  • K. A. Shin,
  • V. N. Shlegel,
  • K. Siyeon,
  • J. H. So,
  • J. K. Son,
  • N. Srisittipokakun,
  • K. Sujita,
  • V. I. Tretyak,
  • R. Wirawan,
  • K. R. Woo,
  • Y. S. Yoon,
  • Q. Yue,
  • S. U. Zaman

DOI
https://doi.org/10.1140/epjc/s10052-019-7279-1
Journal volume & issue
Vol. 79, no. 9
pp. 1 – 12

Abstract

Read online

Abstract The advanced molybdenum-based rare process experiment (AMoRE) aims to search for neutrinoless double beta decay ($$0\nu \beta \beta $$ 0νββ ) of $$^{100}$$ 100 Mo with $$\sim 100\,\hbox {kg}$$ ∼100kg of $$^{100}$$ 100 Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and light readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from $$^{48}$$ 48 Ca-depleted calcium and $$^{100}$$ 100 Mo-enriched molybdenum ($$^{48{{\text {depl}}}}\hbox {Ca}^{100}\hbox {MoO}_{4}$$ 48deplCa100MoO4 ). The simultaneous detection of heat (phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot $$0\nu \beta \beta $$ 0νββ search with a 111 kg day live exposure of $$^{48{{\text {depl}}}}\hbox {Ca}^{100}\hbox {MoO}_{4}$$ 48deplCa100MoO4 crystals. No evidence for $$0\nu \beta \beta $$ 0νββ decay of $$^{100}$$ 100 Mo is found, and a upper limit is set for the half-life of $$0\nu \beta \beta $$ 0νββ of $$^{100}$$ 100 Mo of $$T^{0\nu }_{1/2} > 9.5\times 10^{22}~\hbox {years}$$ T1/20ν>9.5×1022years at 90% C.L. This limit corresponds to an effective Majorana neutrino mass limit in the range $$\langle m_{\beta \beta }\rangle \le (1.2-2.1)\,\hbox {eV}$$ ⟨mββ⟩≤(1.2-2.1)eV .