Archives Animal Breeding (Jan 2023)
In vitro rumen fermentation pattern: insights from concentrate level and plant oil supplement
Abstract
The addition of oil to ruminant diets and oil fatty acid profiles are major factors that negatively affect ruminal fermentation, while increased forage level attenuates the adverse effects. The aim of this study was to determine the effects of oil source supplementation and concentrate level in the diet on in vitro ruminal fermentation kinetics. Pomegranate, garlic or sunflower oils were added (2 % dry matter (DM) basis) to the diets containing 40 % or 60 % (DM basis) concentrates. In vitro gas production parameters, pH, ammonia nitrogen concentration and total protozoa count were measured. Additionally, metabolizable energy (ME), short-chain fatty acid (SCFA) production and organic matter digestibility (OMD) were determined. Rumen fermentation parameters and protozoal population counts were analyzed as a completely randomized design with a 2 × 3 factorial arrangement of treatments, and gas production parameters were analyzed as a 2 × 3 factorial arrangement in a randomized block design. The results showed that the HCPO (high (60 %) concentrate diet containing pomegranate oil) and HCSO (high (60 %) concentrate diet containing sunflower oil) diets produced the highest (5.40 mg dL−1) and lowest (2.61 mg dL−1) concentrations of NH3–N (p>0.01), respectively. Total protozoa count tended (p=0.07) to be highest in HCPO and lowest in HCSO diets (5.10 vs. 4.81 Log 10 g−1 digesta). No interaction effects between the concentrate level and oil source were found on in vitro gas production parameters, pH, estimated ME, SCFA and OMD, and Entodinium and Diplodinium populations (p>0.05). It is concluded that dietary supplementation with highly unsaturated oil from three different sources at 2 % level (DM basis) had no apparent effects on in vitro ruminal fermentation patterns.