Scientific Reports (Mar 2021)

Assessment of clinical radiosensitivity in patients with head-neck squamous cell carcinoma from pre-treatment quantitative ultrasound radiomics

  • Laurentius Oscar Osapoetra,
  • Archya Dasgupta,
  • Daniel DiCenzo,
  • Kashuf Fatima,
  • Karina Quiaoit,
  • Murtuza Saifuddin,
  • Irene Karam,
  • Ian Poon,
  • Zain Husain,
  • William T. Tran,
  • Lakshmanan Sannachi,
  • Gregory J. Czarnota

DOI
https://doi.org/10.1038/s41598-021-85221-6
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 13

Abstract

Read online

Abstract To investigate the role of quantitative ultrasound (QUS) radiomics to predict treatment response in patients with head and neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). Five spectral parameters, 20 texture, and 80 texture-derivative features were extracted from the index lymph node before treatment. Response was assessed initially at 3 months with complete responders labelled as early responders (ER). Patients with residual disease were followed to classify them as either late responders (LR) or patients with persistent/progressive disease (PD). Machine learning classifiers with leave-one-out cross-validation was used for the development of a binary response-prediction radiomics model. A total of 59 patients were included in the study (22 ER, 29 LR, and 8 PD). A support vector machine (SVM) classifier led to the best performance with accuracy and area under curve (AUC) of 92% and 0.91, responsively to define the response at 3 months (ER vs. LR/PD). The 2-year recurrence-free survival for predicted-ER, LR, PD using an SVM-model was 91%, 78%, and 27%, respectively (p < 0.01). Pretreatment QUS-radiomics using texture derivatives in HNSCC can predict the response to RT with an accuracy of more than 90% with a strong influence on the survival. Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.