Journal of Pain Research (Jul 2023)

Electroacupuncture Attenuates Neuropathic Pain in a Rat Model of Cervical Spondylotic Radiculopathy: Involvement of Spinal Cord Synaptic Plasticity

  • Yang P,
  • Chen HY,
  • Zhang X,
  • Wang T,
  • Li L,
  • Su H,
  • Li J,
  • Guo YJ,
  • Su SY

Journal volume & issue
Vol. Volume 16
pp. 2447 – 2460

Abstract

Read online

Pu Yang,1,* Hai-Yan Chen,2,* Xi Zhang,2 Tian Wang,1 Ling Li,2 Hong Su,1 Jing Li,1 Yan-Jun Guo,1 Sheng-Yong Su2,3 1Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China; 2The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China; 3Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning, Guangxi, People’s Republic of China*These authors contributed equally to this workCorrespondence: Sheng-Yong Su, Email [email protected]: Cervical spondylotic radiculopathy (CSR) is a common neurologic condition that causes chronic neck pain and motor functions, with neuropathic pain (NP) being the primary symptom. Although it has been established that electroacupuncture (EA) can yield an analgesic effect in clinics and synaptic plasticity plays a critical role in the development and maintenance of NP, the underlying mechanisms have not been fully elucidated. In this study, we explored the potential mechanisms underlying EA’s effect on synaptic plasticity in CSR rat models.Materials and Methods: The CSR rat model was established by spinal cord compression (SCC). Electroacupuncture stimulation was applied to LI4 (Hegu) and LR3 (Taichong) acupoints for 20 min once a day for 7 days. Pressure pain threshold (PPT) and mechanical pain threshold (MPT) were utilized to detect the pain response of rats. A gait score was used to evaluate the motor function of rats. Enzyme-linked immunosorbent assay (ELISA), Western blot (WB), immunohistochemistry (IHC), immunofluorescence (IF), and transmission electron microscopy (TEM) were performed to investigate the effects of EA.Results: Our results showed that EA alleviated SCC-induced spontaneous pain and gait disturbance. ELISA showed that EA could decrease the concentration of pain mediators in the cervical nerve root. WB, IHC, and IF results showed that EA could downregulate the expression of synaptic proteins in spinal cord tissues and promote synaptic plasticity. TEM revealed that the EA could reverse the synaptic ultrastructural changes induced by CSR.Conclusion: Our findings reveal that EA can inhibit SCC-induced NP by modulating the synaptic plasticity in the spinal cord and provide the foothold for the clinical treatment of CSR with EA.Keywords: electroacupuncture, synaptic plasticity, cervical spondylotic radiculopathy, spinal dorsal horn

Keywords