Breast Cancer Research (Mar 2025)
B cells and energy metabolism in HER2-positive DCIS: insights into breast cancer progression from spatial-omics analyses
Abstract
Abstract During breast tumor progression, the transition from ductal carcinoma in situ (DCIS) to invasive breast cancer is a critical step with large implications for prognosis. However, the mechanisms of invasion are still largely unknown. At the DCIS stage, there is an over-representation of HER2-positive lesions compared with invasive breast cancer. In this study, we investigated the associations between gene expression profiles in cancer cells and the immune microenvironment of HER2-positive DCIS and invasive breast tumors with concurrent DCIS using spatial transcriptomics. We found distinctly more B cells in the vicinity of DCIS ducts than in invasive tumor areas. There was higher expression of genes involved in energy metabolism in DCIS cancer cells than in invasive cancer cells and a positive correlation between expression of metabolic genes and B-cell abundance in DCIS. In contrast were processes related to epithelial to mesenchymal transition negatively correlated with B-cell abundance in DCIS. We also found significant correlation between expression of the B-cell-attracting chemokines CCL19, CCL21 and CXCL13 in stromal cells and B cell abundance in DCIS. This study indicates that B cells may play a protective role in the progression of HER2-positive DCIS to invasive breast cancer and that increased metabolic activity in intraductal cancer cells in combination with chemokines produced by stromal cells may influence the immune microenvironment of DCIS. These findings have implications for understanding HER2-positive breast cancer progression.
Keywords