Defence Technology (Aug 2022)

Experimental study on WFeNiMo high-entropy alloy projectile penetrating semi-infinite steel target

  • Hai-hua Chen,
  • Xian-feng Zhang,
  • Lan-hong Dai,
  • Chuang Liu,
  • Wei Xiong,
  • Meng-ting Tan

Journal volume & issue
Vol. 18, no. 8
pp. 1470 – 1482

Abstract

Read online

The appearance of high-entropy alloys (HEAs) makes it possible for a material to possess both high strength and high ductility. It is with great potential to apply HEAs under extreme conditions such as in the penetration process. In this paper, experiments of WFeNiMo HEA and tungsten heavy alloy (WHA) projectiles penetrating medium-carbon steel were conducted by using the ballistic gun and two-stage light-gas gun that can accelerate projectiles to impact velocities ranging from 1162 m/s to 2130 m/s. Depth of penetration (DOP) at elevated impact velocities of HEA and WHA projectiles were obtained firstly. Combined with the macroscopic and microscopic analysis of the residual projectiles, the transition of the penetration mode of the WFeNiMo HEA projectile was identified systemically. The experimental results indicated that the penetration mode of the HEA projectile changes from self-sharpening to mushrooming with the increase of impact velocity, while for the WHA projectile, the penetration mode is always mushrooming. The microstructure of the residual HEA projectiles showed that the phases tangle with each other and the morphology of the microstructure of the phases differs in the two penetration modes. Besides, the evolution of shear bands and fractures varies in the two modes. The evolution of the microstructure of HEAs causes the sharp-pointed nose to disappear and the HEA projectile ultimately becomes blunt as the impact velocity increases.

Keywords