Analiz Riska Zdorovʹû (Dec 2017)
Risks of age related macular degeneration and led lighting
Abstract
Spectral structure of environmental light can have significant influence on risks of various eye diseases which can evolve quite early. The paper dwells on how age-related macular degeneration evolves and on a part which eye age pigment plays in the process. We discuss predictive models for age pigment accumulation and methodology of their creation. We created a predictive mathematical model for accumulated A2E age pigment quantity allowing for LED lighting peculiarities and its age-related perception. The model encompasses active oxygen forms generation evolving due to decrease in antioxidant cellular protection efficiency in a lighting environment with a higher blue light dose. It is shown that superoxide dismutase, catalase and glutathione peroxidase 1 (GRX 1) efficiency within 445 (plus minus 10 nanometers) range drops substantially in blue light; it increases risks of lower cellular resistance to effects exerted by non-compensated active oxygen forms. These processes which are rather long-term can lead to early age-related macular degeneration. Mathematical calculations prove that in the nearest future a share of patients aged 30–40 who suffer from age-related macular degeneration will grow drastically; it will eventually lead to an increased number of disabled people aged 50–60 whose disability is caused by eyesight disorders. It is shown that if we fail to discover any mechanisms aimed at lowering risks of early age-related macular degeneration evolvement in the nearest future, total costs required for solving eyesight disorders issue will grow substantially. Thus, in 2012 about 140 billion dollars were spent on the eyesight disorders issue all over the world; the sum is likely to reach 377 billion dollars in 2050.
Keywords