Applied Sciences (May 2023)

Obtaining Bacterial Cellulose through Selected Strains of Acetic Acid Bacteria in Classical and Waste Media

  • Justyna Płoska,
  • Monika Garbowska,
  • Simona Klempová,
  • Lidia Stasiak-Różańska

DOI
https://doi.org/10.3390/app13116429
Journal volume & issue
Vol. 13, no. 11
p. 6429

Abstract

Read online

Bacterial cellulose (BC) is a natural exopolysaccharide characterized by a high purity, mechanical strength, and the ability to absorb various compounds. Obtaining BC on an industrial scale is expensive, mainly due to the high cost of the culture media. Replacing classical media with waste from the agri-food industry may be a promising way to reduce the costs when obtaining BC. The aim of these studies was to compare the effectiveness of the biosynthesis of BC in classical and waste media using two strains, Komagataeibacter xylinus K2G30 and Gluconacetobacter hansenii ATCC 23769. Classical Hestrin−Schramm, YPM, GY, and GYE media were used. The waste media were banana peels, celery pomace, fish waste, hemp seed pomace, deproteinized acid whey (DAW), and non-deproteinized acid whey (NDAW). The highest efficiency of BC biosynthesis in classical media was observed in YPM and it was 5.23 g·dm−3 with K. xylinus K2G30. In the waste media, the highest yield of BC was observed in AW, when the yield of BC was 2.99 g·dm−3 with K. xylinus K2G30. In addition, it was demonstrated that the presence of proteins and lactic acid in AW influenced the efficiency when obtaining BC in the culture of K. xylinus. The results indicate that it is possible to obtain BC from industrial waste, especially from AW.

Keywords