BIO Web of Conferences (Jan 2017)

Timing of leaf removal modifies chemical and phenolic composition of Sauvignon Blanc wine

  • Wurz Douglas André,
  • Bem Betina Pereira de,
  • Allebrandt Ricardo,
  • Filho José Luiz Marcon,
  • Brighenti Alberto Fontanella,
  • Outemane Marcus,
  • Rufato Leo,
  • Kretzschmar Aike Anneliese

DOI
https://doi.org/10.1051/bioconf/20170902027
Journal volume & issue
Vol. 9
p. 02027

Abstract

Read online

The objective of this work was to evaluate the effect of different defoliation times on the chemical and phenolic composition of Sauvignon Blanc wine in high altitude regions of Santa Catarina - Brazil. The experiment was conducted in the 2015 and 2016 seasons, in a vineyard located in the city of São Joaquim – Santa Catarina State. The defoliation was carried out during phenological stages: full bloom, berries pepper-corn size, pea-sized berries, veraison, 15 days after veraison and control without leaf removal. During harvest, severity of Botrytis cinerea was assessed by visual evaluation through a diagrammatic scale. For the wine samples from each season, total acidity (meq L−1), pH, total polyphenol content (mg L−1 of gallic acid) and color (Abs 420nm) were performed. For the wines of the 2015 harvest, phenolic compounds were analyzed: gallic acid, catechin, vanillic acid, P-coumaric acid and rutin. The chemical composition of Sauvignon Blanc wine was affected as a result of leaf removal timing, defoliation carried out in full bloom, berries pepper-corn size and pea-sized berries reduced total acidity and increased pH of the wines in both seasons. For wine color, in both seasons, it was found a greater yellow coloration in wines originated from grapes where the plants were not defoliated. The increase of yellow coloration is due to the oxidation of catechins and epicatechins, which is related to the increase of botrytis bunch rot. In the 2015 season there were no influence of leaf removal timing in total polyphenols, however, in the 2016, the defoliation performed in full bloom resulted in lower polyphenols contents. Wines from non-defoliated plants presented higher values of catechin, rutin, P-coumaric acid and gallic acid, related to yellow coloration of wines and greater susceptibility to darkening and oxidation. For vanillic acid, wines from non-defoliated plants have the lowest values, this compound is important in wine preservation. Leaf removal is an important management technique in high altitude regions of Santa Catarina - Brazil, it improves wine chemical composition, and if carried out during the stages of full bloom, pepper corn berries and pea-sized berries can reduce the severity of Botrytis bunch rot; and avoid the formation of phenolic compounds related to the processes of oxidation and darkening.