Remote Sensing (Mar 2022)

Parsimonious Gap-Filling Models for Sub-Daily Actual Evapotranspiration Observations from Eddy-Covariance Systems

  • Danlu Guo,
  • Arash Parehkar,
  • Dongryeol Ryu,
  • Quan J. Wang,
  • Andrew W. Western

DOI
https://doi.org/10.3390/rs14051286
Journal volume & issue
Vol. 14, no. 5
p. 1286

Abstract

Read online

Missing data and low data quality are common issues in field observations of actual evapotranspiration (ETa) from eddy-covariance systems, which necessitates the need for gap-filling techniques to improve data quality and utility for further analyses. A number of models have been proposed to fill temporal gaps in ETa or latent heat flux observations. However, existing gap-filling approaches often use multi-variate models that rely on relationships between ETa and other meteorological and flux variables, highlighting a critical lack of parsimonious gap-filling models. This study aims to develop and evaluate parsimonious approaches to fill gaps in ETa observations. We adapted three gap-filling models previously used for other meteorological variables but never applied to infill sub-daily ETa or flux observations from eddy-covariance systems before. All three models are solely based on the observed diurnal patterns in the ETa data, which infill gaps in sub-daily data with sinusoidal functions (Sinusoidal), smoothing functions (Smoothing) and pattern matching (MaxCor) approaches, respectively. We presented a systematic approach for model evaluation, considering multiple patterns of data gaps during different times of the day. The three gap-filling models were evaluated together with another benchmarking gap-filling model, mean diurnal variation (MDV) that has been commonly used and has similar data requirement. We used a case study with field measurements from an EC system over summer 2020–2021, at a maize field in southeastern Australia. We identified the MaxCor model as the best gap-filling model, which informs the diurnal pattern of the day to infill by using another day with similar temporal patterns and complete data. Following the MaxCor model, the MDV and the Sinusoidal models show comparable performances. We further discussed the infilling models in terms of their dependence on data availability and their suitability for different practical situations. The MaxCor model relies on high data availability for both days with complete data and the available records within each day to infill. The Sinusoidal model does not rely on any day with complete data, which makes it the ideal choice in situations where days with complete records are limited.

Keywords