PLoS ONE (Jan 2013)

Separate origins of ice-binding proteins in antarctic chlamydomonas species.

  • James A Raymond,
  • Rachael Morgan-Kiss

DOI
https://doi.org/10.1371/journal.pone.0059186
Journal volume & issue
Vol. 8, no. 3
p. e59186

Abstract

Read online

The green alga Chlamydomonas raudensis is an important primary producer in a number of ice-covered lakes and ponds in Antarctica. A C. raudensis isolate (UWO241) from Lake Bonney in the McMurdo Dry Valleys, like many other Antarctic algae, was found to secrete ice-binding proteins (IBPs), which appear to be essential for survival in icy environments. The IBPs of several Antarctic algae (diatoms, a prymesiophyte, and a prasinophyte) are similar to each other (here designated as type I IBPs) and have been proposed to have bacterial origins. Other IBPs (type II IBPs) that bear no resemblance to type I IBPs, have been found in the Antarctic Chlamydomonas sp. CCMP681, a putative snow alga, raising the possibility that chlamydomonad IBPs developed separately from the IBPs of other algae. To test this idea, we obtained the IBP sequences of C. raudensis UWO241 by sequencing the transcriptome. A large number of transcripts revealed no sequences resembling type II IBPs. Instead, many isoforms resembling type I IBPs were found, and these most closely matched a hypothetical protein from the bacterium Stigmatella aurantiaca. The sequences were confirmed to encode IBPs by the activity of a recombinant protein and by the matching of predicted and observed isoelectric points and molecular weights. Furthermore, a mesophilic sister species, C. raudensis SAG49.72, showed no ice-binding activity or PCR products from UWO241 IBP primers. These results confirm that algal IBPs are required for survival in icy habitats and demonstrate that they have diverse origins that are unrelated to the taxonomic positions of the algae. Last, we show that the C. raudensis UWO241 IBPs can change the structure of ice in a way that could increase the survivability of cells trapped in the ice.