LDPE Transformation by Exposure to Sequential Low-Pressure Plasma and TiO<sub>2</sub>/UV Photocatalysis
Luis D. Gómez-Méndez,
Luis C. Jiménez-Borrego,
Alejandro Pérez-Flórez,
Raúl A. Poutou-Piñales,
Aura M. Pedroza-Rodríguez,
Juan C. Salcedo-Reyes,
Andrés Vargas,
Johan M. Bogoya
Affiliations
Luis D. Gómez-Méndez
Laboratorio de Microbiología Ambiental y Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110-23, DC, Colombia
Luis C. Jiménez-Borrego
Grupo de Películas Delgadas y Nanofotónica, Departamento de Física, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110-23, DC, Colombia
Alejandro Pérez-Flórez
Grupo de Investigación en Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110-23, DC, Colombia
Raúl A. Poutou-Piñales
Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110-23, DC, Colombia
Aura M. Pedroza-Rodríguez
Laboratorio de Microbiología Ambiental y Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110-23, DC, Colombia
Juan C. Salcedo-Reyes
Grupo de Películas Delgadas y Nanofotónica, Departamento de Física, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110-23, DC, Colombia
Andrés Vargas
Grupo de Física Matemática, Departamento de Matemáticas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110-23, DC, Colombia
Low-density polyethylene (LDPE) sheets (3.0 ± 0.1 cm) received sequential treatment, first by the action of direct-current low-pressure plasma (DC-LPP) with a 100% oxygen partial pressure, 3.0 × 10−2 mbar pressure, 600 V DC tension, 5.6 cm distance, 6-min treatment. Then, sheets were submitted to TiO2 photocatalysis at UV radiation at 254 nm (TiO2/UV) with a pH value of 4.5 ± 0.2 and a TiO2 concentration of 1 gL−1. We achieved a complementary effect on the transformation of LDPE films. With the first treatment, ablation was generated, which increased hydrophilicity. With the second treatment, the cavities appeared. The changes in the LDPE sheets’ hydrophobicity were measured using the static contact angle (SCA) technique. The photocatalytic degradation curve at 400 h revealed that the DC-LPP photocatalysis sequential process decreased SCA by 82°. This was achieved by the incorporation of polar groups, which increased hydrophilicity, roughness, and rigidity by 12 and 38%, respectively. These sequential processes could be employed for LDPE and other material biodegradation pretreatment.