Light: Science & Applications (Mar 2021)
Robust and ultralow-energy-threshold ignition of a lean mixture by an ultrashort-pulsed laser in the filamentation regime
Abstract
Abstract Laser ignition (LI) allows for precise manipulation of ignition timing and location and is promising for green combustion of automobile and rocket engines and aero-turbines under lean-fuel conditions with improved emission efficiency; however, achieving completely effective and reliable ignition is still a challenge. Here, we report the realization of igniting a lean methane/air mixture with a 100% success rate by an ultrashort femtosecond laser, which has long been regarded as an unsuitable fuel ignition source. We demonstrate that the minimum ignition energy can decrease to the sub-mJ level depending on the laser filamentation formation, and reveal that the resultant early OH radical yield significantly increases as the laser energy reaches the ignition threshold, showing a clear boundary for misfire and fire cases. Potential mechanisms for robust ultrashort LI are the filamentation-induced heating effect followed by exothermal chemical reactions, in combination with the line ignition effect along the filament. Our results pave the way toward robust and efficient ignition of lean-fuel engines by ultrashort-pulsed lasers.