JMIR Public Health and Surveillance (Oct 2022)

Key Population Size Estimation to Guide HIV Epidemic Responses in Nigeria: Bayesian Analysis of 3-Source Capture-Recapture Data

  • Anne F McIntyre,
  • Andrew Mitchell,
  • Kristen A Stafford,
  • Samuel Uchenna Nwafor,
  • Julia Lo,
  • Victor Sebastian,
  • Amee Schwitters,
  • Mahesh Swaminathan,
  • Ibrahim Dalhatu,
  • Man Charurat

DOI
https://doi.org/10.2196/34555
Journal volume & issue
Vol. 8, no. 10
p. e34555

Abstract

Read online

BackgroundNigeria has the fourth largest burden of HIV globally. Key populations, including female sex workers, men who have sex with men, and people who inject drugs, are more vulnerable to HIV than the general population due to stigmatized and criminalized behaviors. Reliable key population size estimates are needed to guide HIV epidemic response efforts. ObjectiveThe objective of our study was to use empirical methods for sampling and analysis to improve the quality of population size estimates of female sex workers, men who have sex with men, and people who inject drugs in 7 states (Akwa Ibom, Benue, Cross River, Lagos, Nasarawa, Rivers, and the Federal Capital Territory) of Nigeria for program planning and to demonstrate improved statistical estimation methods. MethodsFrom October to December 2018, we used 3-source capture-recapture to produce population size estimates in 7 states in Nigeria. Hotspots were mapped before 3-source capture-recapture started. We sampled female sex workers, men who have sex with men, and people who inject drugs during 3 independent captures about one week apart. During hotspot encounters, key population members were offered inexpensive, memorable objects unique to each capture round. In subsequent rounds, key population members were offered an object and asked to identify objects received during previous rounds (if any). Correct responses were tallied and recorded on tablets. Data were aggregated by key population and state for analysis. Median population size estimates were derived using Bayesian nonparametric latent-class models with 80% highest density intervals. ResultsOverall, we sampled approximately 310,000 persons at 9015 hotspots during 3 independent captures. Population size estimates for female sex workers ranged from 14,500 to 64,300; population size estimates for men who have sex with men ranged from 3200 to 41,400; and population size estimates for people who inject drugs ranged from 3400 to 30,400. ConclusionsThis was the first implementation of these 3-source capture-recapture methods in Nigeria. Our population size estimates were larger than previously documented for each key population in all states. The Bayesian models account for factors, such as social visibility, that influence heterogeneous capture probabilities, resulting in more reliable population size estimates. The larger population size estimates suggest a need for programmatic scale-up to reach these populations, which are at highest risk for HIV.