PLoS ONE (Jan 2024)

Consistent movement of viewers' facial keypoints while watching emotionally evocative videos.

  • Shivansh Chandra Tripathi,
  • Rahul Garg

DOI
https://doi.org/10.1371/journal.pone.0302705
Journal volume & issue
Vol. 19, no. 5
p. e0302705

Abstract

Read online

Neuropsychological research aims to unravel how diverse individuals' brains exhibit similar functionality when exposed to the same stimuli. The evocation of consistent responses when different subjects watch the same emotionally evocative stimulus has been observed through modalities like fMRI, EEG, physiological signals and facial expressions. We refer to the quantification of these shared consistent signals across subjects at each time instant across the temporal dimension as Consistent Response Measurement (CRM). CRM is widely explored through fMRI, occasionally with EEG, physiological signals and facial expressions using metrics like Inter-Subject Correlation (ISC). However, fMRI tools are expensive and constrained, while EEG and physiological signals are prone to facial artifacts and environmental conditions (such as temperature, humidity, and health condition of subjects). In this research, facial expression videos are used as a cost-effective and flexible alternative for CRM, minimally affected by external conditions. By employing computer vision-based automated facial keypoint tracking, a new metric similar to ISC, called the Average t-statistic, is introduced. Unlike existing facial expression-based methodologies that measure CRM of secondary indicators like inferred emotions, keypoint, and ICA-based features, the Average t-statistic is closely associated with the direct measurement of consistent facial muscle movement using the Facial Action Coding System (FACS). This is evidenced in DISFA dataset where the time-series of Average t-statistic has a high correlation (R2 = 0.78) with a metric called AU consistency, which directly measures facial muscle movement through FACS coding of video frames. The simplicity of recording facial expressions with the automated Average t-statistic expands the applications of CRM such as measuring engagement in online learning, customer interactions, etc., and diagnosing outliers in healthcare conditions like stroke, autism, depression, etc. To promote further research, we have made the code repository publicly available.