Direct Generation and Non-Hermitian Regulation of Energy-Time-Polarization-Hyper-Entangled Quadphotons
Rui Zhuang,
Siqiang Zhang,
Guobin Liu,
Zhou Feng,
Qingyu Chen,
Sinong Liu,
Yanpeng Zhang
Affiliations
Rui Zhuang
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Siqiang Zhang
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Guobin Liu
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Zhou Feng
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Qingyu Chen
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Sinong Liu
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Yanpeng Zhang
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Entangled multiphoton is an ideal resource for quantum information technology. Here, narrow-bandwidth hyper-entangled quadphoton is theoretically demonstrated by quantizing degenerate Zeeman sub states through spontaneous eight-wave mixing (EWM) in a hot 85Rb. Polarization-based energy-time entanglement (output) under multiple polarized dressings is presented in detail with uncorrelated photons and Raman scattering suppressed. High-dimensional entanglement is contrived by passive non-Hermitian characteristic, and EWM-based quadphoton is genuine quadphoton with quadripartite entanglement. High quadphoton production rate is achieved from co-action of four strong input fields, and electromagnetically induced transparency (EIT) slow light effect. Atomic passive non-Hermitian characteristic provides the system with acute coherent tunability around exceptional points (EPs). The results unveil multiple coherent channels (~8) inducing oscillations with multiple periods (~19) in quantum correlations, and high-dimensional (~8) four-body entangled quantum network (capacity ~65536). Coexistent hyper and high-dimensional entanglements facilitate high quantum information capacity. The system can be converted among three working states under regulating passive non-Hermitian characteristic via triple polarized dressing. The research provides a promising approach for applying hyper-entangled multiphoton to tunable quantum networks with high information capacity, whose multi-partite entanglement and multiple-degree-of-freedom properties help optimize the accuracy of quantum sensors.